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Summary

Post-translational modifications, complex formation, subcellu-
lar localization, and cell-type-specific expression create func-
tionally distinct protein subpopulations that enable living
systems to execute rapid and precise responses to changing
conditions. Systems-level analysis of these subproteomes re-
mains challenging, requiring preservation of spatial information
or enrichment of species that are transient and present at low
abundance. Engineered proteins have emerged as important
tools for selective proteomics based on their capacity for highly
specific molecular recognition and their genetic targetability.
Here, we focus on new developments in protein engineering for
selective proteomics of post-translational modifications, protein
complexes, subcellular compartments, and cell types. We also
address remaining challenges and future opportunities to
integrate engineered protein tools across different subpro-
teome scales to map the proteome with unprecedented depth
and detail.
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Introduction
Functionally distinct subpopulations of proteins arise as
a result of post-translational modifications (PTMs),
formation of complexes, subcellular localization, and
cell-type-specific expression. The presence of a protein

within a specific subpopulation may determine whether
it is active or inhibited, whether it is colocalized with
substrates or partners that it acts on, and what the fate
of its product or output will be. Defining the modifica-
tions of individual proteins and the molecular compo-
sition of protein complexes, subcellular compartments,
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and specific cell types is therefore a central challenge in
assigning protein function. Beyond advancing our
fundamental understanding of biological regulatory
mechanisms, this information has led to the develop-
ment of new drugs and therapeutic hypotheses for the
treatment of human disease. These include antibodye
drug conjugates [1] and chimeric antigen receptor T
cells that target cells expressing specific disease-
associated proteins on their surfaces [2]; chimeric
small molecules that redirect the activity of ubiquitin
ligases toward unnatural substrates by induced protein
complex formation for targeted protein degradation [3];

small molecule correctors that restore trafficking of re-
ceptors to the cell surface [4]; and drugs that target
PTM enzymes, including kinases [5] and proteases [6].

Over the past two decades, advances in mass spec-
trometry (MS) have enabled rapid and deep profiling
of the proteome. However, selective analysis of spe-
cific subproteomes remains significantly more chal-
lenging than measurement of bulk protein abundance.
PTMs are often present at low stoichiometry [7] and
therefore must be enriched to remove high back-

ground from unmodified proteins, while protein com-
plexes, subcellular compartments, and specific cell
types must be isolated before analysis to preserve
spatial information [8,9]. These protocols are made
especially challenging by the dynamic nature of PTMs,
the potential for protein complexes to be transient,
and the inability to isolate certain cellular compart-
ments, including major organelles such as the endo-
plasmic reticulum [8], membraneless organelles
formed via phase separation, and biochemical com-
partments [10], by standard differential

centrifugation-based subcellular fractionation ap-
proaches. Engineered proteins recently have emerged
as important tools to address these challenges in se-
lective proteomics. Proteins have at least three key
advantages as tools for selective proteomics, including
their capacity to perform highly selective molecular
recognition of specific functional groups; their ability
to be genetically targeted to specific cells, compart-
ments, or protein complexes; and their evolution to
operate on fast timescales in the cellular environment
for capture of transient protein subpopulations. This

review focuses on recent advances in protein engi-
neering that enable capture of specific subproteomes
for analysis by MS-based proteomics. We discuss
engineered proteins that enable enrichment of
www.sciencedirect.com
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proteins bearing specific chemical modifications, pro-
teins that reside in specific complexes or compart-
ments, and proteins that are expressed in specific cell
types. We also present a perspective on future appli-
cations and challenges in applying engineered proteins
across different subproteome types to gain detailed
insights into protein function.
Figure 1

Engineered proteins for selective enrichment of post-translationally modi
binding and enrichment. Left: Antibody phage display has been used for the se
incorporated into two arms of an IgG to generate PTM-bispecific antibodies th
recognize branched ubiquitin chains that contain both K11 and K48 linkages.
zymes to install a bioorthogonally reactive or biotin handle. Right: Examples of
capture enzymes recognize and covalently modify specific PTM sites. Right: S
termini, including those generated by proteolysis, enabling their enrichment a
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Capturing PTMs with engineered proteins
PTMs to proteins provide a mechanism for proteomic

diversification through introduction of chemical func-
tional groups not found in the genetically encoded
amino acids and by alteration of peptide bond connec-
tivity. PTMs identified to date include phosphorylation,
glycosylation, acetylation, and proteolysis, among
fied proteins and peptides. (a) Phage-display-derived antibodies for PTM
lection of PTM-specific antibodies. These PTM-specific antibodies can be
at require two different PTMs for binding. Right: Bispecific antibodies that
(b) Left: A schematic of the bump-hole strategy for generating PTM en-
bump-hole substrate–enzyme pairs for selective proteomics. (c) Left: PTM
ubtiligase is an engineered enzyme that selectively biotinylates protein N
nd sequencing using LC-MS/MS.
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hundreds of others [11]. These modifications play
important roles in regulating protein structure, enzy-
matic activity, lifetime, and localization. A critical step
toward assigning the biological functions of PTMs is to
understand their residue localization and spatiotemporal
dynamics. Although MS has emerged as a routine tool
for proteomic analysis, profiling PTMs remains chal-
lenging because many modifications are present only at

low stoichiometry [7] and are dynamically regulated by
multiple enzymes [12]. In recent years, engineered
proteins have emerged as robust tools for PTM-selective
proteomics, enabling enrichment of modified proteins
to reduce sample complexity and increase sampling
depth. Engineered proteins function in PTM enrich-
ment based on two primary mechanisms: molecular
recognition of specific modifications and/or covalent
modification of specific functional groups based on their
unique chemical properties.

Engineered proteins for affinity capture of PTMs
Protein scaffolds can perform high affinity, high spec-
ificity molecular recognition of a wide variety of

structures and functional groups and therefore repre-
sent the most universal strategy for PTM enrichment
(Figure 1a). Although alternative strategies have
proven very useful for certain PTMs, such as immo-
bilized metal affinity chromatography for phospho-
peptide enrichment [13], such techniques typically
cannot enrich for specific modified residues and link-
age types. For example, although immobilized metal
affinity chromatography enables enrichment of pSer,
pThr, and pTyr peptides, pTyr comprises <1% of all
cellular phosphorylation sites and is therefore chal-

lenging to sample with appropriate depth [14].
Antibody-based molecular recognition of pTyr enables
isolation of this small but biologically important subset
of phosphopeptides for MS analysis [15,16]. Although
the mostly commonly used antibodies for PTM
enrichment were developed by animal immunization,
modern protein engineering methods provide high-
throughput platforms for identifying and improving
PTM-specific antibodies and other PTM-binding
protein scaffolds. Display approaches have recently
been used for the development of nature-inspired

phosphospecific antibodies [17,18] and Src homology
2 domain-based pTyr binders [19] for proteomics.
Antibody phage display has also enabled the develop-
ment of antibodies for linkage-specific enrichment of
ubiquitin (Ub)-modified proteins. The versatility of
Ub modification in directing diverse signaling out-
comes in eukaryotic cells depends on the ability of the
cellular ubiquitylation machinery to construct Ub
chains that differ by their linkages and topologies
(linear vs branched) to specify different signaling
outcomes. Previous work used antibody phage display

to develop linkage-specific antibodies recognizing Ub
chains at K11 [20] or K48 [21]. More recently, a knobs-
Current Opinion in Chemical Biology 2021, 60:10–19
into-holes heterodimerization strategy was used to
combine these linkage-specific antibodies to generate
a bispecific antibody that recognizes branched Ub
chains containing both K11 and K48 linkages [22]
(Figure 1a). This bispecific antibody was used to
identify cellular conditions that lead to the accumu-
lation of K11/K48-linked Ub chains, such as proteo-
toxic stress. The antibody was further used to enrich

proteins modified by this specific branched-chain Ub
topology, enabling their identification by quantitative
MS and leading to the identification of UBR4 and
UBR5 as the E3 Ub ligases primarily responsible for
modifying proteins with this Ub topology. The multi-
specific antibody strategy has potential as a general-
izable approach for enriching proteoforms with specific
combinations of PTMs.

Engineered enzymes for covalent PTM capture
Engineered enzymes represent attractive tools for se-
lective proteomics based on their potential to combine
protein-based molecular recognition with the formation
of a covalent bond to a chemically reactive group or af-

finity handle such as biotin. This enables enrichment of
proteins bearing specific PTMs and their subsequent
identification using liquid chromatography (LC)-MS/
MS. Nature has evolved a diverse repertoire of enzymes
capable of installing, modifying, and recognizing specific
PTMs. Protein engineering approaches have enabled
many of these enzymes to be repurposed as tools for
selective proteomics, facilitating systems-level study of
biological signaling pathways. Enzymes have the ad-
vantages that they can be genetically targeted to specific
subcellular compartments, providing an opportunity for

subcellular spatial resolution of PTMs, and that they
have typically evolved to function on fast timescales in
the cellular environment, providing an opportunity for
temporal resolution of PTMs.

Early methods for covalent labeling of PTM sites took
advantage of the ability of cellular enzymes to accept
synthetic, bioorthogonally reactive precursors to PTMs,
termed metabolic chemical reporters (MCRs), that are
incorporated into PTMs after feeding to cells or animals
[23,24]. After incorporation, the bioorthogonal tag can

be conjugated with biotin, enabling enrichment of pro-
teins bearing the PTM of interest. However, a limitation
of the MCR approach is that some PTMs, such as
various glycan structures, use the same building blocks.
The development of enzymatic tools that recognize and
modify specific PTMs has helped to overcome this
challenge. PTM-modifying enzymes have been devel-
oped for the capture of O-GlcNAc [25], fucose-a(1,2)-
galactose [26], N-acetyllactosamine, N-acetylneur-
aminic acid-a(2e3)-galactose [27], and cell surface N-
linked glycans [28]. More recently, a new enzymatic tool

for glycoproteomic mapping of mucin-domain glyco-
proteins, which are densely O-glycosylated, has been
www.sciencedirect.com
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developed [29]. Rather than labeling O-glycosylated
mucins with a reactive reporter, this strategy relies on
recognition of the proteins of interest by StcE, an
Escherichia coli protease that specifically cleaves mucin
domains by recognizing a peptide- and glycan-based
motif. StcE has been deployed as a tool for proteomics
to improve sequence coverage, glycosite mapping, and
glycoform analysis of purified mucin samples, and has

also been used as an enrichment reagent for O-glyco-
sylated mucins by conjugating it to beads and enriching
in the presence of EDTA, which inhibits StcE activity.
Future characterization of additional bacterial muci-
nases and engineering of StcE holds promise for the
development of new tools for selective proteomics of
proteins modified with specific glycan structures.

An alternative strategy for chemoenzymatic PTM cap-
ture relies on the use of substrate analogs that have been
modified with PTM reporters that can only be accepted

as substrates by PTM enzymes that have been engi-
neered to recognize them (Figure 1b). This ‘bump-hole’
approach has the advantage that it enables the identi-
fication of individual protein substrates of closely
related PTM enzymes because only the enzyme engi-
neered to have a hole to accommodate the bumped
substrate can use it to install PTMs. The bump-hole
strategy has been successfully implemented to enable
selective proteomics of substrates of kinases [30],
methyltransferases [31], prenyltransferases [32],
acetyltransferases [33], and ADP-ribosyltransferases

(ARTs) [34e36]. Recent work has combined a prox-
imity labeling approach with a bump-hole approach to
identify substrates and interactors of PARP14, a human
ART that plays an important role in immune function
[37]. A mutant PARP14 was designed to accommodate
the NADþ analog 5-benzyl-6-alkyne-NADþ, enabling
biotinylation of the resulting ADP-ribose modification
using click chemistry for enrichment and identification
using LC-MS/MS. In parallel, PARP14 interactors were
selectively biotinylated by BioID proximity labeling
using a PARP14-BioID fusion protein and were identi-
fied using LC-MS/MS. Combining these two data sets

resulted in high confidence identification of 114 sub-
strates of PARP14. This combined proximity labeling/
PTM capture pipeline represents an approach that
could be generalized to many other PTMs for accurate
identification of PTM-substrate pairs. A remaining
limitation of the bump-hole approach is that bumped
substrate analogs are often cell impermeable, limiting
the method to application in cell lysates. In the future,
the MCR approach could be combined with the bump-
hole protein engineering strategy to map PTM
enzymeesubstrate relationships in living cells.

Proteolysis is a unique PTM in that it does not add a
new functional group to proteins, but rather alters
peptide bond connectivity by generating neo-N and
neo-C termini. Although protein N and C termini have
www.sciencedirect.com
unique structures compared to other biological amines
and carboxylates, they are nonetheless challenging to
modify selectively because their reactivity is similar to
that of abundant amino acid side chains such as Lys (N
termini) and Asp/Glu (C termini). Proteases that have
been engineered to favor peptide ligation have
emerged as useful tools for terminal modification of
proteins to enable selective proteomics of N and C

termini, or ‘terminomics’ [38,39] (Figure 1c). The
designed peptide ligase subtiligase was the first
enzymatic tool to be used in N terminomics, enabling
the study of proteolytic pathways involved in
apoptosis, inflammation, viral and bacterial pathogen-
esis, and protein trafficking [40]. Subtiligase catalyzes
a ligation reaction between C-terminal peptide esters
and the N-terminal a-amines of peptides or proteins
[40]. In N terminomics studies, subtiligase is applied
to globally modify N termini in cell lysates with a
biotinylated peptide ester substrate to enable

enrichment of N-terminal peptides and their identi-
fication and quantification using LC-MS/MS. Recent
work using the proteomic identification of ligation
sites approach, which uses highly diverse, proteome-
derived peptide libraries as pools of substrates for
subtiligase, identified a family of subtiligase mutants
that modify N-terminal sequences that cannot be
efficiently modified by the wild-type enzyme [41].
This enabled application of subtiligase to study pro-
teolytic cleavage catalyzed by signal peptidase, a broad
specificity protease that cleaves many sequences not

efficiently captured by wild-type subtiligase. Further
protein engineering work led to the development of
subtiligase-TM, a subtiligase variant that is targeted to
the plasma membrane for efficient and specific cap-
ture of cell surface N termini in live cells [42].
Subtiligase-TM was used to sequence hundreds of cell
surface N termini and to quantify changes in their
abundance in response to proteolysis-inducing bio-
logical stimuli. Application of subtiligase to spatially
resolved mapping of proteolysis inside living cells is
currently limited by the need to use a cell imperme-
able peptide ester substrate, a problem that could be

addressed by future substrate design and protein en-
gineering efforts. Although efficient N-terminal
modifying enzymes have been developed, no enzy-
matic tools have yet been reported that modify free C
termini, likely due to the low intrinsic reactivity of the
carboxylate group. This challenge may be overcome in
the future through further genome mining or protein
engineering efforts that enable development of enzy-
matic tools for selective C terminomics.
Selective proteomics of subcellular
compartments and protein complexes
Localization of proteins to macromolecular complexes
and subcellular compartments organizes cellular pro-
cesses, allowing them to occur within specialized
Current Opinion in Chemical Biology 2021, 60:10–19
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environments and in the presence of an appropriate
repertoire of biomolecules. Over the past decade, the
development of genetically targetable, proximity-
dependent labeling enzymes has transformed our un-
derstanding of the composition of the subproteomes of
compartments and complexes [43e45] (Figure 2).
Proximity labeling enzymes have been engineered from
several different protein scaffolds but have in common

that they generate a reactive species, such as a radical or
an electrophile, that is covalently tethered to biotin.
The reactive biotin species can nonspecifically tag pro-
teins within a few nanometers of the proximity tagging
enzyme. The small tagging radius is enforced by the
short half-life of the activated biotin species (Figure 2a)
or by the need for direct enzymatic transfer to a partner
protein (Figure 2b). In proximity labeling experiments,
the proximity tagging enzyme is targeted by genetic
Figure 2

Engineered proximity tagging enzymes for selective proteomics of prote
ating diffusible reactive species to modify proximal proteins. Left: This group of
converts them to short half-life reactive species. Right: Examples of proximity
transfer biotinylated tags to interacting proteins. Left: These enzymes accept b
them to reactive electrophiles such as thioesters or phosphate esters that can
Examples of direct-transfer proximity taggers and their substrates.
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fusion to a protein or compartment of interest. Addition
of a biotinylated substrate initiates enzymatic genera-
tion of the reactive biotin species and subsequent
tagging of proximal proteins. Biotinylated proteins are
then enriched on immobilized avidin and identified
using LC-MS/MS. Proximity tagging enzymes include
BioID [43,45], which generates 50-biotinoyl-AMP that
reacts with surface lysines; APEX, which generates a

biotin phenoxyl radical that reacts primarily with surface
tyrosines [44]; and the NEDDylator [46,47], PUP-IT
[48], and EXCELL [49], which generate reactive elec-
trophiles on proteins or peptides that are enzymatically
transferred to surface lysine residues. Since their
introduction, proximity tagging approaches have been
widely applied to address an array of questions in cell
biology. In a recent study, the BioID system was applied
to generate a proximity biotinylation map of a human
in complexes and subcellular compartments. (a) Enzymes for gener-
proximity tagging enzymes accepts biotinylated probes as substrates and
taggers that generate diffusible reactive species. (b) Enzymes that directly
iotinylated peptides or proteins as their substrates and use ATP to convert
be enzymatically transferred to lysine residues on proximal proteins. Right:

www.sciencedirect.com
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cell, with BioID fused to 192 proteins from 32 subcel-
lular compartments [50]. This resulted in the assign-
ment of localization for 4145 proteins and in the
identification of 35,902 high confidence proteine
protein interactions.

The two most widely adopted proximity tagging sys-
tems, BioID and APEX, have distinct advantages and

limitations. BioID is advantageous because it requires
only the nontoxic molecules biotin and ATP as sub-
strates. However, it is limited by slow kinetics, generally
requiring 18 h of labeling time before sufficient signal is
obtained. In contrast, APEX has fast kinetics, tagging
proteins on a second to minute timescale, but requires
the toxic substrate H2O2. To overcome the slow kinetics
of BioID, a yeast display screening approach was applied
Figure 3

Engineered enzymes for cell-type-selective proteomics. (a) Incorporation
Engineered tRNA synthetase enzymes generate tRNAs charged with bioortho
synthesis. Expression of these enzymes under cell-type-specific promoters ta
amples of bioorthogonally reactive ncAAs used in cell-type-specific proteomic
enrichment of the cell-type-specific proteome. (b) Proximity tagging enzymes
enzyme fused to a targeting domain or bait protein restricts tagging activity to
complex. Right: Engineered peroxidases have been applied for tissue-specific

www.sciencedirect.com
to identify a BioID variant, TurboID, with 15 mutations
that increase its activity such that only a 10-min labeling
time is required [51]. This improvement in activity
made it possible to apply TurboID for proximity tagging
in flies, worms, and plants [52], contexts in which BioID
gave insufficient signal. Another enzyme, human aryl-
amine N-acetyltransferase (NAT), has recently been
developed for subcellular proximity labeling that avoids

the use of toxic substrates and functions on fast time-
scales [53]. Arylamine NAT catalyzes the conversion of
N-acetyl-N-hydroxyarylamines to N-acetoxyarylamines,
which undergo rapid heterolytic cleavage of the NeO
bond to generate nitrenium ions. These electrophilic
ions are stable on a microsecond timescale and are highly
reactive toward nucleophilic amino acid side chains.
This strategy produced fast timescale labeling with
of noncanonical amino acids (ncAAs) during protein synthesis. Top:
gonally reactive ncAAs that can compete with native tRNAs during protein
gs newly synthesized proteins in only the targeted cell type. Bottom: Ex-
s. Modification of the reactive group with biotin after incorporation enables
for cell-type-specific proteomics. Left: Expression of a proximity tagging
a specific cell type and a specific subcellular compartment or protein
mitochondrial proteomics and for neuron-specific cell surface proteomics.

Current Opinion in Chemical Biology 2021, 60:10–19
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subcellular resolution and has high potential for opti-
mization by protein engineering and future application
in selective proteomics studies.
Cell-type-specific selective proteomics
Proteomic characterization of tissues and organisms
has provided significant biological insights but does
not capture the diversity of biological function in
different cell types. Efforts to purify specific cell types
based on cell surface markers often compromise
cellular structures and networks and may therefore
lead to an inaccurate picture of the biological response.
Methods to encode from which subcellular population

of a protein is derived have been developed to over-
come these challenges and to enable cell-selective
proteomics (Figure 3). These approaches generally
rely on cell-specific expression of enzymes that tag
cellular proteins, enabling enrichment of cell-type-
specific subproteomes from mixed cultures or whole
organisms. Because these techniques rely on enzyme
expression, protein engineering has had a strong
impact on the field of cell-type-specific proteomics.
Screening a library of mutant E. coli methionyl-tRNA
synthetases led to the identification of NLL-MetRS,

a variant that efficiently charges cognate tRNAs with
azidonorleucine (ANL) [54] (Figure 3a). Incorpora-
tion of ANL into the proteome is restricted to cells
expressing NLL-MetRS, enabling its application to
cell-specific proteomics. After incorporation of ANL,
cells are subjected to bioorthogonal noncanonical
amino acid tagging (BONCAT) for biotinylation of
proteins from the cell type of interest, enabling their
enrichment and identification using LC-MS/MS. This
method has been expanded for application in worms
[55], flies [56], mammalian cell lines [57], and mice
[58,59]. Another method, stochastic orthogonal

recoding of translation (SORT) is conceptually similar
but relies on a pyrrolysyl-tRNA synthetase/tRNA pair
to incorporate bioorthogonally reactive noncanonical
amino acids for biotinylation [60,61] (Figure 3a).
SORT has been adapted for application in E. coli,
mammalian cell lines, flies, and mice [62]. Recent
studies have reported the application of noncanonical
amino acid labeling to isolate mouse neuronal and glial
proteomes [62] and to study changes in hippocampal
neuron protein synthesis during long-term memory
formation in mice [63].

Proximity tagging enzymes have been developed as tools
for cell-type-specific proteomics that also provide sub-
cellular spatial resolution of the proteome (Figure 3b).
This is achieved by expressing a proximity tagging
enzyme, such as APEX or HRP, that is targeted to a
specific subcellular location, under a cell-type-specific
promoter. This strategy has been applied to map the
mitochondrial proteome across different Drosophila
tissue types [64] and, more recently, to profile the cell
Current Opinion in Chemical Biology 2021, 60:10–19
surface proteome of the fly brain to identify new regu-
lators of neuronal wiring [65].
Conclusions and future perspectives
Engineered protein tools have been deployed to map
PTM sites, proteineprotein interactions, subcellular
protein localization, and tissue-specific and cell-specific
proteomes with unprecedented depth and detail.
Despite these successes, many protein tools remain
limited by low activity in the cellular environment,
precluding their use in live cells or whole animals. De-
velopments in protein engineering, such as improved
display techniques [66,67], microfluidics-based [68]

and chip-based [69] screening, and phage-assisted
continuous evolution [70], are poised to address these
challenges and have already made inroads in broadening
the applicability of some tools [51]. A second remaining
limitation is the reliance of many engineered enzymes
on cell-impermeable substrates, another obstacle to
their use in live cells and animals. Design of new MCRs
[71] and their combination with engineered protein
tools are likely to address this challenge in the future.
Moving forward, there are many opportunities to inte-
grate different engineered protein tools to obtain tissue-

specific, subcellular, and PTM-scale resolution in a
single proteomics experiment. Future efforts toward
protein engineering for selective proteomics will
therefore propel the field of proteomics toward meeting
the current challenge of moving beyond cataloging
proteins toward assigning their biological functions. The
results of these experiments are likely to provide a
detailed and dynamic picture of cellular signaling that
will advance our fundamental understanding of biolog-
ical regulatory mechanisms and fuel translational sci-
ence in the coming years.
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