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Enzymes that catalyze peptide ligation are powerful tools for site-specific protein biocon-
jugation and the study of cellular signaling. Peptide ligases can be divided into two
classes: proteases that have been engineered to favor peptide ligation, and protease-
related enzymes with naturally evolved peptide ligation activity. Here, we provide a review
of key natural peptide ligases and proteases engineered to favor peptide ligation activity.
We cover the protein engineering approaches used to generate and improve these tools,
along with recent biological applications, advantages, and limitations associated with
each enzyme. Finally, we address future challenges and opportunities for further develop-
ment of peptide ligases as tools for biological research.

Introduction
The ability to site-specifically modify proteins with chemical probes and payloads that cannot be gen-
etically encoded has advanced biological research by enabling drug discovery, synthesis of protein con-
jugates, application of advanced imaging methods, and chemoproteomic profiling of specific protein
features. Protein N and C termini are attractive sites for site-specific protein bioconjugation because
they occur exactly once in each polypeptide chain. While a number of chemical strategies to target
protein termini have been developed [1–6], these often suffer from poor selectivity for protein N or C
termini over lysine or aspartate/glutamate side chains, respectively. Based on their ability to perform
molecular recognition of protein termini with absolute chemoselectivity, peptide ligase enzymes are an
attractive alternative approach for site-specific modification of protein termini and represent powerful
tools for probing biology (Figure 1).
Enzymes that catalyze peptide ligation can be categorized into two main classes: proteases that have

been engineered or otherwise optimized to catalyze peptide ligation; and protease-related enzymes that
have naturally evolved peptide ligation activity. Both classes of enzymes have been applied for site-
specific bioconjugation to protein N and C termini and have been targeted with protein engineering to
generate variants with higher catalytic activity and altered specificity. In this review, we focus on protein
engineering efforts to optimize these enzymes as tools to advance biological research. We cover the
advantages and limitations of each enzymatic technology and discuss recent applications of these tools
for modification of individual proteins and for global profiling of new protein termini generated by cel-
lular proteolytic signaling pathways. Finally, we discuss the remaining limitations of engineered peptide
ligases and future opportunities for the application of engineered enzymes for site-specific modification
of N and C termini to advance our understanding of biological signaling pathways.

Engineering proteases with non-natural ligation
activity
Proteases have been a particularly popular target for protein engineering based in part on their poten-
tial to catalyze peptide ligation, the microscopic reverse of the typical proteolytic reaction (Figure 2A).
Attractive features of proteases as peptide ligation tools include their activity under physiological
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conditions, the availability of both highly promiscuous [7] and highly sequence specific [8] scaffolds as starting
points for protein engineering, and their ability to operate on peptide substrates in aqueous solution and in the
absence of side chain protecting groups. Although proteases are subject to the reversible nature of the hydro-
lytic reaction, their direct application to peptide bond synthesis is limited by the position of the equilibrium
between the proteolytic products and the ligation product [9,10]. Under physiological conditions, protease-
catalyzed hydrolysis predominates over protease-catalyzed peptide ligation due to the higher thermodynamic
stability of the hydrolytic products (ΔG°∼−3 kcal/mol) [9]. However, under kinetically controlled conditions,
the yield of peptide ligation is determined by the kinetic properties of the protease instead of the thermo-
dynamic stabilities of the substrates and products (ΔG‡) [11]. For example, in proteases that form an
acyl-enzyme intermediate, acylation by esters kinetically outcompetes acylation by amides, minimizing
protease-catalyzed hydrolysis of the ligation product and improving product yield on short time scales. Under
these conditions, the ratio of hydrolytic and ligated products formed will depend on the rate of nucleophilic
attack by water (hydrolysis) versus the ligation partner (aminolysis) rather than the thermodynamic stability of
the products and reactants [10,11]. Protein engineering has been applied to shift the kinetic properties of pro-
teases to favor the ligation reaction over the hydrolysis reaction under kinetic control. Protein engineering also
has been used to modulate substrate specificity in protease scaffolds to allow for an increased array of potential
substrates for ligation. These methods have been used to enhance ligation activity and to alter substrate specifi-
city for a variety of natural proteases, including subtilisin (Figure 2B), trypsin (Figure 2C), and carboxypepti-
dase Y (Figure 2D).

Subtilisin variants
Subtilisin BPN’ is a broad specificity serine protease produced by Bacillus amyloliquefaciens [12] that served as
a starting point for the design of the engineered peptide ligase subtiligase. Subtiligase is a double mutant of
subtilisin that was produced by mutating the catalytic Ser to Cys (S221C) [13] and by introducing a Pro-to-Ala
mutation (P225A) to spatially accommodate the larger cysteine nucleophile [1]. The S221C mutation
diminishes subtilisin’s amidase activity, reducing secondary hydrolysis of the ligated peptide product, but main-
tains the enzyme’s ability to form a thioacyl-enzyme intermediate from an ester substrate. The P225A mutation
enhances the aminolysis to hydrolysis ratio by >100-fold, generating a variant that favors peptide ligase activity
over the naturally evolved protease activity [1,14]. With these two mutations, subtiligase efficiently catalyzes

Figure 1. Applications of engineered peptide ligases in biological research.
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peptide bond formation between a peptide C-terminal ester and the N-terminal α-amine of a peptide or
protein (Figure 2B). The peptide ligation activity of subtiligase was further optimized using phage display tech-
niques that enabled screening of >109 enzyme variants [15]. The phage display approach led to the identifica-
tion of subtiligase variants with a >2-fold improvement in peptide ligation activity.
Since the initial report of the subtiligase variant of subtilisin, numerous other properties of the enzyme,

including stability and sequence specificity, have been altered through protein engineering. The stabiligase
variant, which functions in the presence of detergents and chaotropic agents, was developed by introducing five
previously identified mutations (M50F, N76D, N109S, K213R, and N218S) that stabilize subtilisin [14]. A

Figure 2. Repurposing proteases for peptide ligation.

(A) Serine protease mechanism. An amide bond is attacked by the catalytic Ser, generating an acyl-enzyme intermediate,

which is hydrolyzed. (B) Subtiligase-catalyzed peptide ligation. A peptide ester forms a thioacyl-enzyme intermediate with the

catalytic Cys, which can undergo hydrolysis or aminolysis. (C) N- and C-terminal trypsiligase-catalyzed peptide ligation

reactions. In the N-terminal scheme, a protein of interest (POI) with an N-terminal YRH recognition motif is conjugated with a

acyl-4-guanidinophenyl (OGp) ester. In the C-terminal scheme, a POI with a C-terminal YRH recognition motif is conjugated

with an Arg-His acyl acceptor peptide. (D) Carboxypeptidase Y-catalyzed peptide ligation reaction. Carboxypeptidase Y

catalyzes the conjugation of a C-terminal methyl ester with a labeled lysine derivative.
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stabilized Ca2+-independent subtiligase variant, peptiligase, was similarly generated by introducing the subtili-
gase mutations into a previously reported Ca2+-independent subtilisin variant that was engineered for high sta-
bility [16]. Both stabiligase and peptiligase tolerate high temperatures, organic cosolvents, and denaturing
agents, making them suitable for peptide ligation applications that require these conditions.
Protein engineering approaches have also been applied to alter subtiligase specificity. Although it is assumed

that subtiligase variants have retained the broad specificity of subtilisin, they do exhibit some specificity for sub-
strate binding and ligation. Subtiligase specificity has been well characterized using a variety of techniques,
including substrate phage [14,15], synthetic peptide libraries [17,18], and proteome-derived peptide libraries
[19]. While subtiligase generally maintains subtilisin’s specificity on the non-prime side (according to
Schechter and Berger nomenclature [20]), these techniques revealed sequence biases on the prime side that
were not apparent from studies of subtilisin. Subtiligase prefers small amino acids at the P10 position and aro-
matic or large hydrophobic amino acids at the P20 position [14,17–19]. The proteomic identification of ligation
sites (PILS) method, which utilizes highly diverse, proteome-derived peptide libraries as a pool of substrates for
subtiligase, revealed that non-optimal sequences are accepted with varying degrees of efficiency. The PILS
approach was further used to characterize the efficiency of peptide ligation for >25 000 substrate-subtiligase
variant pairings, leading to the identification of 72 subtiligase mutants for labeling previously inefficient
N-terminal sequences [19]. Additional subtiligase mutants that alter substrate specificity on both the prime and
non-prime sides have also been developed by rational design and by screening variant activity against synthetic
peptide libraries [1,14,21–23].
Based on its ability to catalyze peptide ligation, subtiligase has been deployed for a variety of N-terminal bio-

conjugation applications that have advanced the biological sciences. Subtiligase is an attractive tool for N-terminal
modification because of its chemoselectivity for N-terminal α-amines over lysine ε-amines without restrictive
N-terminal sequence requirements. In this context, subtiligase and subtiligase variants have been used as tools for
synthesis of linear peptides [24] and for N-to-C-terminal peptide macrocyclization [25,26]. Because the main
determinants of the ability of a peptide or protein N terminus to be modified by subtiligase or its variants are the
accessibility of its N terminus and its ability to bind subtiligase in an extended conformation [14], subtiligase has
also found broad applicability in modification of proteins with peptide esters. This strategy has been used to
introduce reactive functional groups, fluorophores, cytotoxic drugs, polymers, and other biological molecules,
such as DNA, into protein scaffolds [14,19]. Subtiligase has also been optimized as a catalyst for expressed
protein ligation that eliminates the need for a Cys residue at the ligation junction. In this method, intein chemis-
try is used to generate a protein C-terminal thioester, which can be accepted as a substrate by subtiligase, enabling
modification of the protein C terminus [27]. Subtiligase-catalyzed expressed protein ligation was used for synthe-
sis of a monophosphorylated version of the tumor suppressor lipid phosphatase PTEN, revealing how site-specific
phosphorylation inhibits PTEN’s activity [28]. Beyond synthesis and modification of individual proteins and pep-
tides, subtiligase has been used for global capture of protein N termini to study proteolytic signaling pathways. In
this method, known as subtiligase N terminomics, subtiligase is used to globally modify N termini in a cell lysate
with a peptide ester linked to a biotin affinity tag and a TEV protease cleavage sequence, allowing for the enrich-
ment, selective elution, and analysis of protein N termini by LC–MS/MS [29]. This approach has been applied to
study proteolytic cleavage events that occur in the context of apoptosis [29,30], viral [31] and bacterial infection
[32], inflammation [33] and protein trafficking [34]. In a similar manner, subtiligase has also been used for prote-
ase substrate discovery, revealing specific protein substrates cleaved by inflammatory and apoptotic caspases
[33,35,36] and a protease associated with Zika virus [31] in the context of cell lysate. Subtiligase applications have
recently been reviewed in more detail [37].
Subtiligase-catalyzed N-terminal modification has the advantages that it relies on an enzyme that can be

recombinantly expressed; that high yields can be achieved on a fast timescale; that it requires only a catalytic
amount of enzyme; and that it is broadly sequence compatible. Despite the broad utility that these advantages
provide, subtiligase also has several limitations that remain to be overcome. Subtiligase reaction yield is limited
by peptide ester hydrolysis, so a large excess of peptide ester is often required to achieve high yields of ligation
product. Although many subtiligase variants with altered specificity have been developed, none of these achieve
truly comprehensive recognition of all N-terminal sequences, making selection of an appropriate mutant an
important consideration [19]. However, the specificity mutants do retain broad specificity, so they are not
applicable in situations in which the goal is to modify a single specific sequence in a complex background such
as a cell lysate. While subtiligase N terminomics has led to the identification of many protease substrates, so far
the technique has been applicable only in cell lysates and on the surface of live cells [38], but not to the interior
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of live cells because available subtiligase substrates are cell-impermeable peptides. Future developments in
protein engineering of subtiligase that enhance ligation efficiency and identify mutants with significantly broa-
dened or narrowed specificity would therefore expand the applicability of subtiligase to N-terminal modifica-
tion. Development of cell-permeable subtiligase substrates would allow subtiligase N terminomics to be
performed inside living cells, enabling mapping of proteolytic signaling pathways with subcellular spatial
resolution.

Trypsin variants
The serine protease trypsin has long been considered a promising enzyme for catalyzing peptide synthesis [39].
A peptide ligase variant of trypsin, trypsiligase, that retains the native Ser catalytic nucleophile was recently
reported [40]. Trypsiligase was produced from trypsin through the introduction of four mutations, resulting in
an enzyme with high specificity for the sequence YRH and dependence on Zn2+ ions (Figure 2C). Initial cleav-
age of the substrate occurs between Tyr and Arg. Trypsiligase exhibits substrate-activated catalysis in which it
converts from a zymogen-like state to an active conformation that favors peptide ligation over hydrolysis only
in the presence of the tripeptide motif YRH and Zn+2 ions [40]. Site specific protein tagging at both the N-
and C-terminus using trypsiligase has been reported. When used for N-terminal labeling, the trypsiligase
variant can recognize activated substrate mimetics such as peptidyl 4-guanidinophenyl esters (OGp), allowing
for N-terminal protein tagging with diverse acyl groups (Figure 2C, top) [40]. Trypsiligase-catalyzed C-terminal
modification procceds via a transpeptidase reaction between an introduced Y-RH motif and RH-X nucleophilic
acyl acceptor peptide, where X represents either a tag or peptide sequence (Figure 2C, bottom).
Trypsiligase-mediated bioconjugation has been applied for the site specific introduction of click anchors into
antibodies [41,42].
Trypsiligase-catalyzed site-specific protein bioconjugation has the advantage that it is highly specific for the

YRH motif, giving it the potential to label a single protein terminus in the context of a complex protein
mixture such as a cell lysate or a live cell. However, this application has yet to be reported. Although this speci-
ficity provides an advantage for modification of a specific protein, it limits the applicability of trypsiligase for
global profiling of protein termini, as the YRH motif is only found in in 0.5% of all known protein sequences.
Trypsiligase has the limitations that a large of excess of acyl acceptor substrate is often required, and that the
enzyme can catalyze secondary hydrolysis of the ligation product [43]. Future protein engineering efforts on
trypsiligase to minimize secondary hydrolysis and to alter its substrate specificity would expand the utility of
this enzyme for protein bioconjugation and the study of cell signaling.

Carboxypeptidase Y variants
Carboxypeptidases are a class of proteases that cleave amide bonds at the C-terminal end of their substrate pro-
teins or peptides. In their natural contexts, carboxypeptidases contribute to a variety of processes, including
providing nutrition for the cell by cleaving amino acids from extracellular peptides, participating in the general
turnover of proteins, and protein maturation [44,45]. Carboxypeptidase Y (CPD-Y), isolated from
Saccharomyces cerevisiae, is a well-studied carboxypeptidase with a natural P10 preference for hydrolyzing large
non-polar amino acid residues at the C terminus of proteins [46]. Despite its preference for particular P10 resi-
dues, CPD-Y has been used in applications calling for broad-specificity C-terminal cleavage, such as
C-terminal protein sequencing [47]. Under certain conditions, CPD-Y also exhibits transpeptidase activity, in
which an amino acid or another nucleophile can be ligated to the C terminus of a protein (Figure 2D). This
transpeptidation activity has been used to replace the C-terminal amino acids of proteins with a variety of
labels, including fluorogenic lysine derivatives, cysteine derivatives, and click chemistry handles [48–51]. More
recently, CPD-Y was used to develop a selective C-terminal biotinylation approach termed Profiling Protein
C-Termini by Enzymatic Labeling (ProC-TEL) [52,53]. It was previously known that while CPD-Y favors
hydrolysis at pH 5–7, the enzyme more readily catalyzes the transpeptidase reaction at pH > 9 [54]. By increas-
ing the reaction pH, CPD-Y activity was shifted to favor incorporation of a biotinylated lysine derivative at the
C-terminus of a variety of proteins, allowing for subsequent enrichment of biotinylated C-terminal peptides
and their sequencing by LC–MS/MS [52]. Since its development, ProC-TEL has been utilized to study
caspase-induced cleavage during apoptosis by monitoring the generation of neo-C termini [55]. Although
CPD-Y mutants with increased ligation activity have been developed, CPD-Y has still not been adopted for
widespread use due to its bias for particular sequences during ligation activity and poor ligation product yields
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[50]. However, other natural carboxypeptidase variants may be promising protein engineering targets for tool
development to produce non-specific C-terminal labeling enzymes [56].

Repurposing natural peptide ligases for bioconjugation
Since the first reports of repurposing proteases for peptide ligation, several classes of enzymes with naturally
evolved peptide ligation activity have been discovered (Figure 3). These enzymes are mechanistically similar to
proteases in that they typically use a catalytic Ser or Cys nucleophile to form an acyl-enzyme intermediate.
This intermediate can then be hydrolyzed or can react with the N-terminal α-amine of a peptide to form a
new amide bond. While the hydrolysis reaction predominates under physiological conditions in the proteases,
naturally evolved peptide ligases favor peptide bond synthesis. However, in some cases, hydrolytic cleavage pre-
vents the formation of ligation product in high yields. Protein engineering and other techniques have been
applied to all of the major peptide ligase classes to optimize their activity for use as tools for protein bioconju-
gation and the study of cellular signaling.

Sortase variants
Sortases are a class of enzymes that catalyze the covalent attachment of proteins to Gram-positive bacterial cell
wall peptidoglycans via a transpeptidation reaction [57]. Staphylococcus aureus sortase A is a transpeptidase
that initially cleaves a substrate bearing an LPXTG motif between Thr and Gly to generate a Cys-linked
thioacyl-enzyme intermediate. This intermediate is then intercepted by a pentaglycine peptide attached to the
peptidoglycan precursor lipid II, forming a new peptide bond [58]. Because the key substrate recognition ele-
ments are the LPXTG and pentaglycine peptides, sortase A has been applied broadly for bioconjugation to pro-
teins and peptides bearing one of these motifs (Figure 3A). To expand the applications of sortase A, protein
engineering approaches have been applied to improve its catalytic activity and to modify substrate motif recog-
nition. Yeast display and in vitro compartmentalization strategies were independently used develop a sortase A
variants with a >100-fold increases in catalytic activity compared with wild-type sortase A [59,60]. The effi-
ciency of sortase-mediated ligation has been improved by the development of proximity-based sortase-mediated
ligation (PBSL) [61]. In PBSL, the target protein is co-immobilized with sortase A through a linker that is
cleaved during the ligation reaction, increasing the efficiency of ligation to >95%, while leaving no trace of the
immobilization tag. A yeast display approach was used for directed evolution of sortase A variants with the
modified substrate recognition motifs LAXTG and LPXSG [62]. Characterization of sortase A homologs from

Figure 3. Reactions catalyzed by natural peptide ligases.

(A) Sortase A-catalyzed peptide ligation. Sortase A catalyzes ligation of an N-terminal peptide or protein bearing an LPXTG motif at its C terminus

and a C-terminal peptide or protein bearing a (poly)Gly at its N terminus. (B) Butelase 1-catalyzed peptide ligation. Butelase 1 catalyzes ligation of a

peptide or protein with an N/D-HV motif at its C terminus to the N terminus of a peptide or protein. (C) PatG catalyzed peptide cyclization. PatG

cleaves after Pro, thiazole, thiazoline, or oxazoline in its recognition sequence and catalyzes the cyclization of the resulting linear peptide.
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other bacterial species has also led to the identification of variants that modify sequences that are unreactive
with the S. aureus enzyme. Other properties of sortase, including its stability and dependence on Ca2+, have
also been optimized through protein engineering [63,64].
Sortase-mediated ligation, also known as sortagging, has been used for a wide variety of bioconjugation

applications, including modification of a protein of interest with fluorescent markers [65,66], synthesis of anti-
body conjugates [67–69], and introduction of chemical handles for click chemistry [70–72]. Sortase A has also
been utilized for synthesis and modification of peptides, including spider venom peptides [73], cone snail
toxins [74], cyclotides [75], relaxin peptides [76], and peptides labeled with biotin, PEG, and lipids [77].
Because both the N- and C-terminal substrates of sortase can be genetically encoded, and because its high
sequence specificity ensures modification of only proteins with the cognate motif, sortase has been widely
applied for in vivo protein bioconjugation. Sortase-mediated tagging has been used in vivo to tag proteins in E.
coli [78]; to modify the surface of red blood cells with single-domain antibodies [79]; and for a variety of other
tagging applications in yeast, Toxoplasma gondii, and human cell lines [80–82]. Importantly, sortase is able to
modify naturally exposed surface glycine residues, eliminating the need to genetically engineer a pentaglycine
tag for cell surface modification. Sortase A labeling has also been applied on an organismal level in
Caenorhabditis elegans, demonstrating its potential for protein tagging in complex eukaryotic systems [83]. The
broad applications of sortase-mediated labeling have previously been reviewed in more detail [84].
Sortase A-mediated ligation has the advantages of demonstrated applicability in living systems and high spe-

cificity for its cognate substrates. However, sortase specificity also presents a limitation for application of this
enzyme in the context of global profiling of protein termini. Sortase has proven amenable to protein engineer-
ing to alter its properties, and future efforts in this direction may further enhance its activity and substrate
scope, expanding the applicability of this enzyme for protein terminal modification.

Peptide asparaginyl ligases
Butelase 1, an Asp/Asn-specific peptide asparaginyl ligase (PAL) that is homologous to asparaginyl endopepti-
dases (AEPs), was recently isolated from the cyclic peptide producing plant Clitoria ternatea (Figure 3B) [85].
In its native context, butelase 1 catalyzes the cyclization of linear peptides to produce cyclotides that are neces-
sary for host defense from herbivorous pests [86,87]. Butelase 1 recognizes peptides harboring a C-terminal D/
N-H-V motif, cleaving between Asp/Asn and His to generate a thioacyl-enzyme intermediate. This intermediate
can then react with the N-terminal α-amine of the same peptide to form a cyclized product. The N-terminal
ligation partner is limited only by the exclusion of Pro and acidic residues at P10, and the necessity of a hydro-
phobic residue at P20. However, if Gly is present at P10, any P20 residue is accepted for macrocyclization [85].
This broad specificity has been exploited to allow butelase 1 to catalyze peptide ligation rather than cyclization
by adding an excess of nucleophilic peptide to intercept the thioacyl-enzyme intermediate in trans.
Applications of butelase 1 were initially limited due to the reversible nature of the ligation reaction [88]. In
butelase 1-catalyzed ligation reactions, the HV dipeptide acts a competitive nucleophile with the desired sub-
strate, requiring an excess of the desired substrate in solution. The use of thiodepsipeptides, in which the thiol
leaving group is not accepted as a nucleophilic substrate by the enzyme, renders the reaction irreversible and
has helped to overcome this challenge [89].
Butelase is a promising tool for peptide ligation due to its high peptide cyclization rates, with much higher effi-

ciency than sortase [90]. Applications of butelase 1 to date have included cyclization of large bacteriocins up to 70
residues in length [91]; site-specific N-terminal labeling of proteins [89]; preparation of protein thioesters in con-
junction with sortase [88,92,93]; and modification of the bacterial cell surface to study interactions with human cells
[94]. However, applications of butelase 1 have been limited by its high sequence specificity and the inability to
express the enzyme recombinantly, which limits the applicability of protein engineering approaches to alter its prop-
erties. Butelase 1 homologs from Oldenlandia affinis [95,96] and cyclotide-producing plants of the Violaceae family
[97] that are amenable to recombinant expression have been identified, among others [98–100]. Recently, the
Oldenlandia affinis asparaginyl endopeptidase has been successfully utilized for both N- and C-terminal protein
labeling [101], demonstrating that these enzymes are promising targets for future protein engineering efforts.

Subtilisin-like peptide ligases
Naturally occurring subtilisin-like enzymes that catalyze peptide ligation were recently discovered, almost two
decades after the engineered subtiligase variant of subtilisin was reported (Figure 3C). This enzyme family, the
founding member of which is PatG, catalyzes N-to-C peptide macrocyclization in the context of biosynthesis of
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cyanobactins and cyclotides, two classes of ribosomally synthesized and post-translationally modified peptide
(RiPP) natural products [102,103]. PatG catalyzes proteolytic cleavage of the C-terminal motif PAYDGE
between Pro and Ala, releasing the AYDGE peptide and forming an acyl-enzyme intermediate. This intermedi-
ate can then be intercepted by the N-terminal α-amine of the enzyme-bound peptide to form a cyclic product.
Unlike the engineered peptide ligase subtiligase, PatG retains the Asp-His-Ser catalytic triad found in subtilisin
proteases. A helix-loop-helix insertion in PatG compared with subtilisin proteases is believed to shield the
acyl-enzyme intermediate from water, preventing hydrolysis and favoring the ligation reaction. The removal of
this helix-loop-helix domain effectively silences macrocyclization activity in favor of proteolytic cleavage activity
[104]. Unlike subtilisin, PatG binds its target peptide in a bent conformation, creating a requirement for a
cyclized residue at the P1 position. This limits the substrate scope of PatG to peptides containing a P1 thiazo-
line or oxazoline derived from heterocyclization of Cys, Ser, or Thr. PatG also accepts Pro at P1 in synthetic
substrates, but the catalytic efficiency of cyclization is much lower than with its native substrates. PatG has been
applied for the cyclization of non-natural substrates between 3 and 22 residues in length [105,106]. A PatG
homolog, PagG, that utilizes P1 Pro-containing peptides as its native substrates, was recently characterized and
used to catalyze macrocyclization of more than 100 different peptides in vitro [107]. Therefore, aside from the
requirement for a cyclic P1 residues, PatG-like enzymes are capable of synthesis of diverse macrocycles.

Figure 4. Comparison of engineered and naturally evolved peptide ligase enzymes.

© 2020 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society8

Biochemical Society Transactions (2020)
https://doi.org/10.1042/BST20200001

D
ow

nloaded from
 https://portlandpress.com

/biochem
soctrans/article-pdf/doi/10.1042/BST20200001/884500/bst-2020-0001c.pdf by guest on 15 June 2020



PatG enzymes have been demonstrated as effective catalysts for cyclic peptides, an important class of drug
candidates. However, PatG and its homologs exhibit unfavorably slow reaction kinetics compared with other
peptide ligases. Additionally, PatG enzymes are inefficient catalysts of trans peptide ligation for synthesis of
linear peptides. Future protein engineering efforts, in combination with genome mining for new homologs,
may lead to development of enzymes with wider substrate tolerance and faster kinetics. Discovery of PatG var-
iants with improved properties in these areas would likely lead to their wider adoption as tools for biology.

Future challenges and opportunities
The application of peptide ligases for site-specific modification of peptide and protein N and C termini has
had a strong impact on a wide array of research areas in chemistry and biology. The current toolbox of natural
and engineered peptide ligases enables site-specific modification of protein termini without the need to intro-
duce an engineered epitope, tagging of specific sequences through introduction of a recognition motif, and
global modification of N and C termini for chemoproteomic studies (Figure 4). However, several limitations to
these tools remain to be overcome through protein engineering. While a number of terminal modification
enzymes with broad N-terminal specificity have been characterized, few enzymes with broad C-terminal specifi-
city have been identified, and none of these enzymes are able to modify free, unactivated C termini. These
restrictions could be addressed through further genome mining for enzymes that possess these activities, or
through protein engineering platforms such as phage [15] or yeast display [59], microfluidics [108] or chip-
based [109] approaches, or phage-assisted continuous evolution [110]. With the exception of sortase, no
peptide ligase enzymes have yet been developed that can function inside living cells, precluding their use to
obtain subcellular spatial resolution of protein termini. This limitation arises primarily as a result of the need
to use substrates that are not cell permeable or non-physiological reaction conditions. Development of new sub-
strates and new peptide ligase enzymes, as well as further optimization of existing enzymes, could meet this
challenge and would enable the study of cellular signaling pathways with subcellular resolution. New develop-
ments in protein engineering are therefore likely to drive new applications of engineered peptide ligases and to
propel their impact on all areas of biological research.

Perspectives
• Importance of the field: Engineered peptide ligases catalyze site-specific modification of protein

termini, enabling introduction of chemical probes and payloads for drug discovery, advanced
imaging, protein synthesis, and chemoproteomic profiling, among many other applications.

• Summary of current thinking: The current toolbox of peptide ligases consists of engineered
proteases and naturally occurring peptide ligases. These enzymes facilitate both site-specific
modification of naturally occurring protein sequences as well as sequence-specific modifica-
tion of proteins with engineered epitopes.

• Future directions: Improvements in enzyme specificity and activity will provide the field with
more useful tools suitable for new applications. In particular, the development of broad speci-
ficity C-terminal modification enzymes, enzymes that can modify free C termini, and peptide
ligases that can function as tools inside living cells would expand the utility of peptide ligases
for site-specific bioconjugation and the study of cellular signaling.
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